If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2-18n-224=0
a = 2; b = -18; c = -224;
Δ = b2-4ac
Δ = -182-4·2·(-224)
Δ = 2116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2116}=46$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-46}{2*2}=\frac{-28}{4} =-7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+46}{2*2}=\frac{64}{4} =16 $
| 4a+8a+a=117 | | 4y+12=42 | | x-3(x+5)=3x+16 | | h=-4.9T^2+20 | | 42=2(m+6)+m | | x/5–17=7 | | M(t)=-t^2+4t+5 | | M²-m+3=0 | | Y=-128+9.5x | | 2x(^2)-5x=0 | | X2-40x-348=0 | | 3^5x=7^x2-1 | | 7n+1=7n–6 | | 5d+1=4d+7 | | 9(a+6)=84.6 | | 9p=82.8 | | 3n+5÷2=10 | | 13x-12=12x | | 17-6x=-43 | | 5/6b-5=7×5 | | 13+8x=141 | | x+5=122x=8x-8=1 | | (4y-35)=(2y+17) | | (4y-35)°=(2y+17)° | | 6+6x=10x-2 | | 4x-2(4x)=-24 | | 10x(x-2)=90 | | -3x-6(-1)=-9 | | c-27=8+10 | | X=10y+72 | | 23x19(19=20-1) | | 10-3g=2 |